The Chebyshev Polynomial of Best Approximation to a Given Function on an Interval
نویسندگان
چکیده
منابع مشابه
A method to obtain the best uniform polynomial approximation for the family of rational function
In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...
متن کاملa method to obtain the best uniform polynomial approximation for the family of rational function
in this article, by using chebyshev’s polynomials and chebyshev’s expansion, we obtain the best uniform polynomial approximation out of p2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولReal VS. Complex Rational Chebyshev Approximation on an Interval
I f f E C[-I, I] is real-valued, let Er( f ) and E'( f ) be the errors in best approximation to f in the supremum norm by rational functions of type ( m , n ) with real and complex coefficients, respectively. It has recently been observed that E'( f ) < Er( f ) can occur for any n > 1, but for no n 1 is it known whether y,,,, = inf, E'( f ) / E r ( f ) is zero or strictly positive. Here we show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1966
ISSN: 0025-5718
DOI: 10.2307/2003506